Characterization of LiMn2O4 cathodes by electrochemical strain microscopy
نویسندگان
چکیده
منابع مشابه
Direct growth of flexible LiMn2O4/CNT lithium-ion cathodes.
Flexible, binder-free LiMn(2)O(4)/CNT nanocomposites with good reversible capability and cycling stability were fabricated by in-situ hydrothermal growth for flexible lithium battery applications.
متن کاملSpinel LiMn2O4 nanorods as lithium ion battery cathodes.
Spinel LiMn2O4 is a low-cost, environmentally friendly, and highly abundant material for Li-ion battery cathodes. Here, we report the hydrothermal synthesis of single-crystalline beta-MnO2 nanorods and their chemical conversion into free-standing single-crystalline LiMn2O4 nanorods using a simple solid-state reaction. The LiMn2O4 nanorods have an average diameter of 130 nm and length of 1.2 mic...
متن کاملEco-friendly nitrogen-containing carbon encapsulated LiMn2O4 cathodes to enhance the electrochemical properties in rechargeable Li-ion batteries
This study describes the synthesis of nitrogen-containing carbon (N-C) and an approach to apply the N-C material as a surface encapsulant of LiMn2O4 (LMO) cathode material. The N heteroatoms in the N-C material improve the electrochemical performance of LMO. A low-cost wet coating method was used to prepare N-C@LMO particles. The N-C@LMO was characterized by X-ray diffraction (XRD), X-ray photo...
متن کاملVisualization of ion transport in Nafion using electrochemical strain microscopy.
The electromechanical response of a Nafion membrane immersed in water was probed using electrochemical strain microscopy (ESM) to redistribute protons and measure the resulting local strain that is caused by the movement of protons. We also measured the relaxation of protons from the surface resulting from proton diffusion. Using this technique, we can visualize and analyze the local strain cha...
متن کاملElectrochemical Characteristics of LiMn2O4 (Li/Ni) Cathode Materials
The present study used the Pechini process with a continuous furnace to synthesize LiMn2O4 powders. After heat treatment, the particle size and lattice constant of the LiMn2O4 powder increased. For heat treatment cathode powders (LMO800), due to both the average valence of Mn cations approaching the theoretical value and the higher crystalinity, the discharge capacities are raised significantly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2016
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.4943944